2018考研數學解題21種數學思維
[摘要] 終于進入兩位數的倒計時了,同學沒有沒有開始緊張?
第一部分 《高數解題的四種思維定勢》

第二部分 《線性代數解題的八種思維定勢》
1.題設條件與代數余子式Aij或A*有關,則立即聯想到用行列式按行(列)展開定理以及AA*=A*A=|A|E 。
2.若涉及到A、B是否可交換,即AB=BA,則立即聯想到用逆矩陣的定義去分析。
3.若題設n階方陣A滿足f(A)=0,要證aA+bE可逆,則先分解出因子aA+bE再說。
4.若要證明一組向量a1,a2,…,as線性無關,先考慮用定義再說。
5.若已知AB=0,則將B的每列作為Ax=0的解來處理再說。
6.若由題設條件要求確定參數的取值,聯想到是否有某行列式為零再說。
7.若已知A的特征向量ζ,則先用定義Aζ=λζ處理一下再說。
8.若要證明抽象n階實對稱矩陣A為正定矩陣,則用定義處理一下再說。
4.若題設中給出隨機變量X ~ N則馬上聯想到標準化 ~ N(0,1)來處理有關問題。
5.求二維隨機變量(X,Y)的邊緣分布密度fx的問題,應該馬上聯想到先畫出使聯合分布密度的區域,然后定出X的變化區間,再在該區間內畫一條//y軸的直線,先與區域邊界相交的為y的下限,后者為上限,而fy的求法類似。
6.欲求二維隨機變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應該馬上聯想到二重積分的計算,其積分域D是由聯合密度的平面區域及滿足Y≥g(X)或(Y≤g(X))的區域的公共部分。
7.涉及n次試驗某事件發生的次數X的數字特征的問題,馬上要聯想到對X作(0-1)分解。
8.凡求解各概率分布已知的若干個獨立隨機變量組成的系統滿足某種關系的概率(或已知概率求隨機變量個數)的問題,馬上聯想到用中心極限定理處理。
9.若為總體X的一組簡單隨機樣本,則凡是涉及到統計量的分布問題,一般聯想到用x分布,t分布和F分布的定義進行討論。